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Abstract: A new functional, Psib(®), of an electronic state in solids based on the bonding indicator B(z,7")
in terms of Mulliken’s electron partitioning approach has been introduced. Using Psib(®), the bonding
variations of an electronic state caused by electron—phonon coupling can be studied. With this proposed
approach, the differences between the “flat band” states for Hg in coupling to the phonons and the peaklike
structure of electron—phonon coupling constants in the q space are well explained.

Introduction linear response theofy. or the frozen phonon approaéfihe
former approach can deal with any phonons; however, it does
not fully consider the anharmonic effects. The latter one
overcomes this difficulty; however, it is normally limited to the
high symmetric and commensurate phonon modes corresponding
to supercells of appropriate sizes. In this work, the frozen
phonon approach is used because the variation of a wave
function caused by a specific phonon can easily be obtained in
this approach.

A phonon mode can be viewed as a dynamic displacement
field u, acting on the equilibrium structurey, = xloK + Ui,
Wherexlok indicates the equilibrium position of theéh atom in
the Ith unit cell; u, can be calculated from the following

In exploring the connection between superconductivity and
chemistry, we have proposed a “flat barsteep band” scenario
for the occurrence of superconductivity based on the chemical
origin of pairwise attractive interaction between conduction
electrons. In this model, the coexistence of bands with large
dispersion and bands with vanishing slope at the Fermi level is
essential. This scenario bears some similarity with the “itinerant
electrons versus local pair” modehlso applied to high~
cuprates. However, our model is based on the actual band
structures extracted from first principles, which is not necessarily
equivalent to a two-band model. Through testing the model for
Hg® and Ca! we have established the approach to determine

the “flat band” and “steep band” in the entire first Brillouin formula:

zone. The interplay between the high-velocity electrons and Aq

nearly zero-velocity electrons are realized through the interac- u, = —= e¥ explgx). — iogt) (1)
tions with those phonons, which provide significant electron \/_K

phonon coupling. In our previous work, we studied the coupling
between the electrons and specific phonons with the linear
response approach. By using the extended degenerate perturb
tion theory, we have demonstrated the correspondence betwee
the electror-phonon interactions and the “dynamic pseudo
Jahn-Teller effect’ In this work, we will study the behavior
and particularly the bonding variations of the flat band states
caused by specific phonons.

whereA; is the amplitude of the vibratiom, the mass of the
4th atom, e? the polarization vector, andg the frequency.
r]’he amplltude of a phonon at very low temperature can be
calculated based on the Debye temperatigas follows?

[, *0= 9h?%4m ks, 2)

wherekg is the Boltzmann constant. The polarization vetefé)r
can be obtained from symmetry analy8ior from linear
response calculations. Applying, at an arbitrary time t, e.d.
Within the ab initio framework, the behavior of a specific = 0, on a structure is equivalent to modulating it by a
electronic state in a phononic field can be studied through the displacement wave of wave vectay of a phonon, and
accordingly, a specific electronic stgigwill be transformed

Description of Method
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into |k £qj'C] Two calculations based on the original unit cell The part in the bracket can be defined as Kidependent

and the supercell, respectively, are performed, wiei® the overlap matrix element as
wave vector of an electron and j is the band index.

To see the variation in bonding involved in this process we g;r,(L,L') = Ze‘kR foL(r)XT' L(r = R) dr (7)
need a bonding indicator for a specific electronic state in a solid. ’ ' '

As the existing bonding indicators such as COHé&mbedded
in the tight-binding linear muffin-tin orbital (TB-LMTG¥ By using (7), (6) can be written in a more compact form as
scheme and COGPembedded in thextended Hekel (EH)4 follows:

scheme are based on ttensity of state¢DOS), they cannot o T

be used directly in our case. Considering a solid as a large mole- (K] |kJB:ZZ§:,T'(L1L,)C‘[,lL CoL (8)
cule!>we can treat a one-electron wave function as a molecular wrh

wave function. Suppose that we have a band gtgtéwhich

can be expanded in terms of some kind of basis{;é;éﬂ Thus, the total probability of thékjOstate electrons occurring

in the entire space is partitioned into the on-site part(z')

. K ki and the intersite partr(= 7). The latter part can be used as a
Ikj= 2'9&1@1 ®) bonding indicator to measure the contribution of a specific state
* |kj(Oto the bonding between atomsandt':

where . runs over all freedoms of the basis functions, for ki ' - ; ,
example, in the full potential LMTO (FP-LMTO) methdélo B” () = Z‘CI,L CYL st 9)
is just a shorthand notation of «, L, with 7 representing the :
position vectors of atoms in the primitive unit cell= «? being

the energy parameter to represent the tail energy of the envelo
function, andL the combination of the angular momentum
quantum numbers | (0, 1, 2, ...) and(—I, =1 + 1, ... 1= 1, ).
After the energy freedom im of (3) is summed out, the
expansion formula (3) is similar to the linear combination of
atomic orbitals into a molecular orbital. Therefore, we can devise
a Mulliken'” bonding indicator in a solid. Mulliken’s idea is
that asy?(r) dr can be explained as the probability of an elec-
tron appearing in a microvolumer dThe probability that an
electron occurs between two atoms can be taken as a measur
for a bond order, and thus, the normalization condition of a
wave function naturally corresponds to the total probability in
the entire space. Now we start from (3) by assuming that the
energy dependence of the basis functions has been summed o
Thek dependence df[is due to the Bloch law as shown in

Obviously,BX (7,1') expresses essentially the same as COOP
Rn partitioning the electrons. It should be noted tB4t(z,7') is
also basis set dependent and thus is not an absolute indi-
cator. In fact, as the present bonding indicators do not cor-
respond to quantum mechanical operators, they are not measur-
able quantities of a microscopic quantum system. For example,
both COHP and TBE depend on the approach to partition the
total energy. The basis dependenceBbf(z,7') as defined in
(9) has some shortcoming; e.g., this bonding indicator cannot
be used in the case of an orthogonal basis. Some other problems
Rave been discussed in detail in ref 11. In practice, sBite
(z,7') depends on the expansion coefficier@sd (L), the
corresponding wave functions must be normalized in the same
way in order to compare the variation of the bonding indicators.
U}Xnd whenz andz’ are not in the same primitive unit cell, the
corresponding coefficients and overlap integrals should be used

the following: by considering the Bloch law. At the present stage, it is still
K kR difficult to directly implement the above approach into the full
e (1) = Ze % T = R) (4) potential LMTO (FP-LMTO) framework due to the fact that
(i) the full potential LMTOs are long-ranged instead of tight-
whereR represents the lattice vector in direct space, andd binding, (ii) the full potential LMTOs are not only-dependent
L have the same meaning as described above. By using (3) andUt alsoe-dependent, where is an energy parameter to rep-
(4), &j|kjO= 1 can be expanded as follows: resent the tail energy of the envelop function. Such prop-
erties make the above electron partition ill-defined and the
[Kj|kjE= computation for the overlap matrix elements unnecessarily

K(R'— . i tedious. In this work, we approximate the overlap matrix
ik(R'—R) _ _ pn ki kj
f drR R,Z LL’e 2% (0= Ry (r = ROC Gy elements in (5) by those obtained from the Slater basis. Such
s 5) an approximation is acceptable as the extendéckelband®®
can be adjusted to the ab initio bands as we have shown in an

By changing the variablas— R asr andR' — R asR, (5) can  €arlier pape?.

be rewritten as follows: The indicatorBY .(T’T'). describes .the bonding property of a
state|Py;for atomic pairs €,7'), so it can be used to describe
i K= dré*Ry* 1)y (r — R)ICN" N the bonding property of an _electronlc state in a two_-ator_n
Ik T’;L,[Z f Ken (e N Cru molecule. However, for multiatom molecules and solids, it
(6) cannot be used directly because the stdtgllinvolves many

. atoms. To describe the bond character of a multiatomic state,
83 Dronskowski, R.; lelp?gelfnph;%;s' Pé‘gsl'_gt{“ig‘é29§3gg‘5§?17- one needs to consider all of the pairs involved in this state.
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Figure 1. Projection of the orbitals of the (a¥6L) (b) |D6L) and (c)|F60states of Hg together with the doubled unit cell andlthga and b) and.3 (c)
phonon patterns represented by arrows. The numbering for the Hg atoms is additionally given in (a).

Hence, we define a functional for an electronic stabg;Cas potential of arbitrary shape instead of the atomic sphere approximation
follows: (ASA)? ensures the accuracy when dealing with phonons. Besides,
the adiabatic approximation in dealing with the electrphonon
Psib@®,;) = z BXi (z,7)IN (10) systems is a;syme_d in thls_ work."l_'o con\{enlently calculate and repre_sent
/ some quantities in the interstitial region, the plane-wave Fourier

<7 S ; . ; . .
representation is used in this region, which requires pseudo-Hankel

where the summation in the numerator is done over all pairs functions instead of the singular Hankel functions to be taken as the
involved in a stateé®,[] The conditionz < 7 guarantees that envelop functions. Except for the structural parameters, all other
j

every pair is onlv counted onchLis the total number of such computational parameters are the same for the three structures. The
yp y 2k- 6s, 6p, 5d LMTO basis has been used for valence states, while the

pairs. For 5,0"0!5- the sqmmatlon poses no prqblem becauseSp state is treated as semicore state throughout this work. The one-
only the pairs in the unit cell need to be considered due t0 center expansions inside the MT spheres are performed lupits 6.

the periodicity. Even in the nonperiodic case, the summation |n the interstitial region, the pseudo-LMTOs are expanded in plane
will terminate at limited terms, aBY (z,7') will become zero waves up to 9.63, 13.3, and 20.0 Ry, 9.62, 14.5, and 20.4 Ry,
when the distance betweerandt’ exceeds some fixed value. respectively, for 6s, 6p, 5d orbitals of Hg and Hg-L. The charge
Psib@y;) is actually an algebraic average of the bonding densities and the potentials inside the MT sphere are represented by
indicators, and therefore, it not only contains the dominant the spherical harmonics up t@a.. = 6, while those in the interstitial
bonding interactions but also considers the other weak interac-"e9ion are represented by 2634 and 5266 plane waves, respectively,
tions and the possible cancellations among them. Accordingly, ©©" H9 and Hg-L. The nontouching MT sphere radius is taken to be
we attribute the bond character of a stitg;[to Psiby). It 2.82 and 2.76 au for Hg and Hg-L, respectively. The calculations have

: ; g been carried out to self-consistency by using ax188 x 18 k-mesh
ShOL_“_d '_Oe pointed out that as MuIIlkens. ellectron number (580 independent k points for Hg, 5832 for Hg-L) and a modified
partitioning scheme was used to determiB€ (z,7'), the

) ) - tetrahedron method with a nonlinear instead of the usual linear
approximations such as the basis set dependence and othepterpolationz* Al calculations are based on the primitive unit cell

problems! are inherited to Psild¢;). However, as we are only parametem = 5.6427 au for Hg.
interested in the variation of Psib(;j), such approximations _ )
will not hurt our result too much. Results and Discussion

Computational Details The phonon pattern df = %/,g, shown in Figure 1 has the

) Cartesian coordinates-(L/6, ¥/»(3)'2, Yetg(0))2x/a, with & =
Mercury has been chosen as an example to illustrate the responsea sin(@), 6 = 41.946, whereg, is one of the reciprocal unit
of a flat band state to phonons. On the basis of our preceding fwork, T ! 9 P

we know that for Hg only the first branch phonons along el and cell basis vectors g space. I_:rom Figure 1, |_t is obvious that
I'—F directions of the first Brillouin zone (BZ) can effectively couple  the frozen L phonon results in a doubled unit cell alongtthe
to the electronic states in the vicinity of the Fermi level. In this work, direction of the undistorted rhombohedral cell. Accordingly, the
we have chosen the land the I; phonons, which couple strongly and  first Brillouin zone (BZ), is reduced to half of the original one
weakly, respectively. The eigen vectors obtained from the linear- along theg, direction. As shown in Figure 2, tH2sy symmetry
response calculations age = (0, —1, 0) anda s = (0.7884, 0, 0.6151)  of (BZ), is completely broken by the L phonon, and the
in Cartesian coordinates. They are plotted in Figure 1. which shows originally equivalent high-symmetrk points in part become
that the two phonon modes double the original primitive unit cell and unequivalent. TheL point with a coordinate of (0%, 0)
modulate the structurg ina d?fferent way. I.t is inter.esting to learn why expressed in the reciprocal basis vectrsy, gs is transformed
they behave so drastically different in their coupling to the electrons onto theTl" point in the new BZ, (BZ), of the Hg-L structure,

and how they affect the flat band state. . . .
By freezing the above two phonons, we obtain two superstructures while the otherL point at (/2 0, 0) becomes unequivalent to

(Hg-L1, Hg-L3) from the original rhombohedral structure of Hg. The the former one. We call B p0|.nt. Th?F point aF {2, 1/23 0)is
electronic structures may be computed for these structures via various!S0 transformed onto thB point, while one of its equivalents
first-principles methods. In this work, the FP-LMT0method based at (2, 0,%,) remains unmoved. We call@ point. The original
on the local-density approximation (LDA) of Janakloruzzi—Wil- Z point at {5, Y5, 1/,) also transforms onto thi® point. The
liams?* exchange-correlation potential with a general gradient ap- other k points in the BZ are transformed in a similar way;
proximation (GGA) of Perdew et &.has been employed, in which a

(22) Perdew, J. P.; Burke, K.; Ernzerhof, Mhys. Re. Lett. 1996 49, 3865.
(20) Savrasov, S. YPhys. Re. B 1996 54, 16470. (23) Perrot, FPhys. Status Solidi B973 60, 223.
(21) Janak, J. F.; Moruzzi, V. L.; Williams, A. RRhys. Re. B 1975 12, 1257. (24) Blochl, P.; Jepsen, O.; Andersen, O. Rhys. Re. B 1994 49, 16223.
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Figure 2. Projections of the first Brillouin zones (a) (B£df Hg and (b)
(BZ), corresponding to Hg distorted by the froZzemphonons and (c) (BZ)
inserted into (BZ) for direct comparison.
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Figure 3. Band structure of Hg distorted by the frozen phonon along
selected symmetry lines calculated by the full potential LMTO method.
(See also Figure 2b.)

however, we will focus on th& and Z points, because only
these twdk points in the irreducible wedge of the BZ have flat
bands at the Fermi levéiDue to the distortions of the structure
caused by the L.and Ls phonons, the original degeneracy of
bands at the specid&l points as described above is removed.
This effect is expected to be very small considering the energy
scale of phonons (Debye frequency) in comparison with that
of the electrons (Fermi energy). For this reason, as an illustration
we only have plotted the band structures of Hgil Figure 3,
which shows that the two flat bands Bt stem from theF
(upper) andZ point (lower) in (BZ), respectively, while the
flat band at théB point is attributed to th& point. The electronic
states that lie in the original (B&)put outside of (BZ) are all
folded into the latter, a fact that increases the number of bands

shown in columnAl andA2, the mean values of the changes
of the eigenvalues with respect to the Fermi level are 0.001 73
(0.023 57 eV) and 0.00 167 Ry (0.022 71 eV) for &nd L
phonons, respectively. Provided the electron pairing is mediated
by the phonons, the pairing energy is in the order6f02 eV,

a value that is consistent with the experimental and theoretical
findings. The fact that the mean value of th& column is larger
than that of theA2 column indicates a more effective coupling
of the Ly phonon with the electrons compared to thgohonon

in agreement with our earlier results of electrgghonon
coupling constant distribution ig space’. Another interesting
fact concerns both the negative and the positive values occurring
in the A1 and A2 columns, which implies that with the
mediation of phonons the electronic states very close to the
Fermi level can fluctuate around the Fermi level, provided the
Fermi energy is not affected by the electrgghonon interaction.
The latter assumption can be verified by calculating the
electron-phonon self-energy at low temperatdfdt needs to

be pointed out thaA1l andA2 as defined in Table 1 reflect the
second-order and higher effect of a phonon on an electronic
state because the first-order variation of the eigenvalue should
be zerd?>?0 As far as the electroaphonon matrix element is
concerned, they reflect part of the electrgghonon coupling.
This can be seen by approximating the two spft&i, — €+

gm andexn — €k + gqm Of “degenerate” Fermi statéknCand |k

+ gmOwith 2(€kn — €r) and 2¢xn — €), respectively, for the
distorted and undistorted structure. Through this substitution,
the square electrerphonon matrix elementAg2 — Ae?)/4 in

ref 26 reduces to|&n — €| — |ekn — €Fl) (|ékn — €| + ekn —

€r|). Obviously ourA1l andA2 correspond to the content in the
first parentheses. In ref 28, xn, €tc., are all obtained through
interpolations, respectively based on the distorted and undis-
torted structure, while in our cagg, andegn are all eigenvalues
close to the Fermi level.

The relatively large differences among the Fermi energies
(see Table 1) can be attributed to the fact that the frozen phonon
approach treats the phonon affected structure as a statically
different structure, which is obviously a drawback of this
approach. However, the quantities in Table 1 are all relative
ones to the corresponding Fermi energies, so the drawback
mentioned above is well overcome.

We thus give numerical evidence to our earlier speculation
that the flat band state at the Fermi level can be dynamically
emptied and filled due to lattice vibratioh#\s shown in Table
1, among the flat band states close to the Fermi level, the state
|Z60is most effectively coupled to the;lphonon, the next is
|D6L) while the statgF6[L) which is equivalent tgD6L] is the
least. Such differences between the effects;aind Ls phonons
and the resulting changes to the different flat band states can
be explained reasonably well by investigating the bonding
property and its variation during the electrgphonon interaction
process. In Table 2, we list the calculated values of Esjlas

as compared to the band structure of undistorted Hg; see Figureyafined in this work for the flat band states of Hg and their

3. For some specidt points, the eigenvalues relative to the
Fermi energies and their changes caused by the correspondin
phonons are listed in Table 1. Also shown are the relations
between the electronic states in (B&nd (BZ) . For example,

the |L70state [ is thek point and 7 refers to the band index)
scatters via the L phonon to th&13state. The identities
between the eigenvalues @if{1and |BOand those ofDOand
|[FOin undistorted Hg are simply the result of symmetry. As

variations. The identity of the numerical values for Psi§(D

%nd Psib(E) is of no surprise as they refer to actually equivalent

states in the rhombohedral structure of Hg. Our calculation
indicates tha{Z6llis a pure p state, while|F6Jand |D60are

(25) Butler, W. H.Treatise on Materials Science and TechnoloBsadin, F.
Y. Ed.; Academic Press: New York, 1981; Vol. 21, p 165.

(26) Liechtenstein, A. I.; Mazin, I. |.; Rodriguez, C. O.; Jepsen, O.; Andersen,
O. K. Phys. Re. B 1991, 44, 5388.
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Table 1. Eigenvalues (Ry) and Their Changes at Some k Points?@
Hg-0 Hg-L, Ho-Ls
Er=0.557 13 Er=0.58544 Er=0.584 14
AE(K) AE(K) Al AE(K) A2
—0.157 65 (1) —0.158 50 ['19) 0.8452x 1073 —0.159 02 19 0.1370x 10°2
—0.162 07 (L) —0.163 78 T12) 0.1710x 1072 —0.163 4512 0.1380x 102
0.10353 (2) 0.102 53 (R) —0.9998x 1073 0.101 08 (Q,) —0.2440x 1072
—0.017 93 (3) —0.020 78 (Qy) 0.2840x 1072 —0.019 37 (Qy) 0.1440x 102
0.061 97 (D) 0.060 89 (3 —0.1080x 102 0.059 91 (3 —0.2060x 102
—0.016 00 (R) —0.018 63 (Q2) 0.2620x 1072 —0.017 45 (D) 0.1450x 102
—0.157 65 (B) —0.159 68 (B2 0.2030x 1072 —0.159 57 (By) 0.1920x 1072
—0.162 07 (B) —0.164 74 (B1) 0.2670x 1072 —0.163 85 (By) 0.1790x 102
0.061 97 (F) 0.059 83 (B —0.2150x 102 0.060 03 (By) —0.1940% 102
—0.016 00 () —0.016 38 (By) 0.3740x 1073 —0.016 91 (By) 0.9025x 1073

aEg is the Fermi energyAE(kj) = E(kj) — Er, A1 = |AE(k]) of Hg-L1|—| AE(k]) of Hg-0|, A2 is defined similarly toAl. After each value, thk point

and band index in the corresponding BZ is given in parentheses.

Table 2. Values of Psib(®) x 102 for the Flat Bands of Hg and
Their Variations Caused by the Phonons L; and L3

Hg-0 Hg-Ly Hg-Ls
Psib () Psib (@) APsib Psib (@) APsib
1.3754 (%) 1.0923 (D1 —0.2831 1.2246 (») —0.1508
1.2964 (Q) 1.0229 (D —0.2735 1.1490 (B) —0.1474
1.2964 (k) 1.0462 (Bs) —0.2502 1.1575(B)  —0.1389

aThe APsib values are calculated as Péib — Psib@:), where ®;
represents the initial state as in the first column, whillg is the final
state.

hybrids of 0.2574p+ 0.4349p + 0.4946p, and 0.2574p—
0.4349p + 0.4946p, respectively. This difference in combina-

The larger variation of Psilp6[) as compared to that of
Psib(F60) shown in Table 2 can easily be explained by
inspecting their orbital topology and the phonon pattern as
shown in Figure 1. It is obvious that both &nd Lz phonons
mainly affect the bonding along the direction; however, for
|F6L] that direction is associated with stronger bonding due to
stronger overlapg(1,3) = 0.5529x 107%), while for |D6L] it

is weaker B(1,3) = 0.2131 x 1071). Therefore, both the L
and Lz phonons will hardly distortF6[1 The larger variation of
Psib(z60) compared to PsibD60) cannot be explained by only
considering the first-order bonding interaction as before, because
B(1,3)= 0.531 x 107! of |Z60is even larger than that ¢D60]
(0.2131x 1071). However, the second order Psig) is much

tion with the phase change required by the Bloch law decides gy gjjer (0.75x 1072 than that of[D60(0.1321x 1071, and
the bonding difference between these states. For example, dug is the third order Psib value. Besides, sif#&is a pure p

to the pure pcharacter, the bonding property|@bLis isotropic,
namely. B(1,2) = B(1,3) = B(1,4)... = 0.531 x 107! (first
nearest neighbors (nn)§(2,3) = B(2,4) = B(3,4)...= 0.75 x
1072 (second nn)B(2,7) = B(3,6) = B(4,5) = 0.85 x 1072
(third nn); B(1,5)= B(1,6)= B(1,7)...= —0.185x 1072 (fourth

nn). While those for théF6Care very anisotropic, e.g., in the
case of first nnB(1,2) = 0.5711x 1071, B(1,3) = 0.5529 x
1071, B(1,4) = 0.2131x 107%, .... Obviously, it is the mixing

of py and g into p, that reduces the overlap of the relevant
orbitals of |[F60and |[D600Jand thus weakens their bonding
properties as indicated by PSIBEL) and Psib(D6L) in Table

2. The most interesting fact in Table 2 is that all of the absolute
values ofAPsib@) for the L; phonon are larger than those for
Lz phonons. This fact implies that the phonon causes stronger
electror-phonon interactions, which produce a larger change

state, the contribution of wave function variations to this state
as discussed above is larger than that@8l] These factors
combine to produce a larger variation of P&6() than that of
Psib(D60). In fact, higher order Psidf) should play a more
important role than the first order Psib) in deciding the
variations, because normally the phonon energy is not high
enough to influence the first nn bonding.

On the basis of the above discussions, we give a rational
explanation for the flat band states having electrphonon
coupling strengths according {860> |D6> |F6Cas shown
in Table 1. It should be noted that in this work the electron
phonon coupling has been discussed based on the quantity
(AEy), which is related to the “electrerphonon matrix
elements” as discussed above. Though the elecfpbionon
matrix element is of greatest importance among the fa&tors

of the bonding property of an electronic state as indicated by that influence the electrerphonon coupling constantas used

the value of Psib). In our present approach, the changes of
the functional PsilsD) arise from mainly two sources. The first

one concerns the changes of the overlap integrals caused b

the static distortion of the structure, which enters into RB)b(

through formulas 5 and 6. The second one is due to the change.

of the wave function. For example, froj6to |D11[]the wave
function changes from a pure gtate to a hybrid state of s, p,
and d waves, which will result in new terms in the calculation
of BY (z,7) in (5) and thus changes the value of Pdil(

Obviously, the former one reflects the way a phonon distorts a
structure, while the latter one reflects how an electronic state

responds to this distortion. As shown in Figure 1, thgophonon

should couple to the corresponding states more strongly than
the Ls phonon because it can stretch the bonds more effectively 27

than the I3 phonon according to their displacement patterns.
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by physicists, it is generally necessary to consider the geo-
metrical structure of the Fermi surface and the Fermi velocities

¥n order to get a full understanding of the peaklike structure of

A in q space. The reason for the necessity to include the
geometrical effect” and the “velocity effect” is becaus()
contains all the contributions of the electronic states that are
related byq. For Hg, as there is no flat sheet on the Fermi
surface and no structure for the density of statesratiitese
two effects should be even smaller than those ifNItherefore,

the change of Psik¥) that indicates the matrix element effect
can reveal the origin of the peaklike structuretoh gq space

Hgb.

) Butler, W. H.; Smith, H. G.; Wakabayashi, Rhys. Re. Lett. 1977, 39,
1004.
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In summary, the frozen phonon approach has been used tan calculatingBX (z,7') and thus to put the whole calculations
study the electronic structure of Hg. By introducing a new in one frame. This will be left to our future work.
functional Psib@), we have provided a chemical approach to
explain the coupling between a specific electronic state and a
specific phonon. The approximations in the calculations of
Psib@) can be improved by using energy partitioning scheme JA011815Q
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